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Additional Disclaimer

I am not an official spokesman for any Intel products. I do not 
speak for my collaborators, whether they be inside or outside 
Intel.
I work on system pathfinding and workload analysis, not 
software products.  I am not a developer of Intel software tools.
You may or may not be able to reproduce any performance 
numbers I report, but the code is on GitHub and I will provide 
anything else you need to attempt to reproduce my results.
Hanlon’s Razor (blame stupidity, not malice).
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Outline

• Background and context
• Parallel Research Kernels
• C++ parallelism
• NWChem and experiences with OpenMP
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• To MPI or not to MPI…

• One-sided vs. two-sided?

• Does your MPI/PGAS need a +X?

• Static vs. dynamic execution model?

• What synchronization motifs 
maximize performance across scales?

Application programmers can afford to 
rewrite/redesign applications zero to one 
times every 20 years… 

HPC software design challenges (2014)
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• Intranode parallelism is growing 
much fast than internode…

• Intranode parallelism is far more 
diverse than internode parallelism.

• After ~20 years, internode behavior is 
converged to some subset of MPI-3.

• Big Cores, Little Cores, GPU, FPGA all 
require (very) different programming 
models.

HPC software design challenges (2018)

How do we maximize productivity+performance+portability?How do we measure productivity+performance+portability?
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Standard methods

• NAS Parallel Benchmarks

• Mini Applications
(e.g. Mantevo, LULESH)

• HPC Challenge

There are numerous examples of 
these on record, covering a wide range 
of programming models, but is source 
available and curated?

What is measured?

• Productivity (?), elegance (?)

• Implementation quality
(runtime or application)

• Asynchrony/overlap

• Semantics:

• Automatic load-balancing (AMR)

• Atomics (GUPS)

• Two-sided vs. one-sided, collectives

Programming model evaluation



Copyright ©  2015, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Goals of the Parallel Research Kernels
1. Universality: Cover broad range of performance critical application patterns.

2. Simplicity: Concise pencil-and-paper definition and transparent reference 
implementation. No domain knowledge required.

3. Portability: Should be implementable in any sufficiently general 
programming model.

4. Extensibility: Parameterized to run at any scale. Other knobs to adjust 
problem or algorithm included.

5. Verifiability: Automated correctness checking and built-in performance 
metric evaluation.

6. Hardware benchmark: No!  Use HPCChallenge, Xyz500, etc. for this.
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• Dense matrix transpose
• Synchronization: global
• Synchronization: point to point
• Scaled vector addition
• Atomic reference counting
• Vector reduction
• Sparse matrix-vector multiplication
• Random access update
• Stencil computation
• Dense matrix-matrix multiplication
• Branch
• Particle-in-cell

Outline of PRK Suite

tra
nsp

ose

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

Star-
shaped 
stencil

Static kernels

A B C+= + S *
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Language Seq. OpenMP MPI PGAS Threads Others?

C89 √ √ Many SHMEM

C99/C11 √ √√√ UPC √ Cilk, ISPC

C++17 √ √√√ Grappa √

Kokkos, RAJA, TBB, 
PSTL, SYCL,

Boost.Compute, 
OpenCL, CUDA…

Fortran √ √√√ coarrays “pretty”, OpenACC

Python √ Numpy
Chapel √ √

√√√ = Traditional, task-based, and target are implemented identically in Fortran, C and C++.

Additional language support includes Rust, Julia, and Matlab/Octave.



https://github.com/ParRes/Kernels
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for i in range(1,m):
for j in range(1,n):

A[i][j] = A[i-1][j] 
+ A[i][j-1]
- A[i-1][j-1]

A[0][0] = -A[m-1][n-1]

• Proxy for discrete ordinates 
neutron transport; much simpler 
than SNAP or Kripke.

• Proxy for dynamic programming, 
which is used in sequence 
alignment (e.g. PairHMM).

• Wraparound to create dependency 
between iterations.

Synch point-to-point

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1
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B[2:n-2,2:n-2] += W[2,2] * A[2:n-2,2:n-2] 
+ W[2,0] * A[2:n-2,0:n-4]
+ W[2,1] * A[2:n-2,1:n-3]
+ W[2,3] * A[2:n-2,3:n-1]
+ W[2,4] * A[2:n-2,4:n-0]
+ W[0,2] * A[0:n-4,2:n-2]
+ W[1,2] * A[1:n-3,2:n-2]
+ W[3,2] * A[3:n-1,2:n-2]
+ W[4,2] * A[4:n-0,2:n-2]

• Proxy for structured mesh 
codes.  2D stencil to 
emphasize non-compute.

• Supports arbitrary radius 
star and square stencils via 
code generator for C11 and 
C++ models, which was 
inspired by OpenCL.

Stencil

Star-
shaped 
stencil
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for i in range(order):
for j in range(order):

B[i][j] += A[j][i]
A[j][i] += 1.0

• Proxy for 3D FFT, bucket sort… 

• Local transpose of square tiles 
supports blocking to reduce TLB 
pressure.

Transpose

tra
nsp

ose
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I study molecular dynamics, but to tell the 
truth I am interested more in the dynamics 
than in the molecules, and I care most about 
questions of principle.

Phil Pechukas, Columbia University Chemical Physics Professor 
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I study C++ parallelism, but to tell the truth I 
am interested more in the parallelism than 
in the C++, and I care most about questions 
of practice.
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Why C++ parallelism?

• C++ is a kitchen sink language – it has pretty much every feature that exists 
in programming languages (other than simplicity and orthogonality).

• Used across essentially all markets/domains where parallelism or 
performance matter.

• Fortran and Rust usage domain-specific.

• Interpreted languages do not satisfy performance requirements.

• C++ can be extended to do all sorts of things within the language itself.  
Variadic templates for fun and profit!

• Mattson’s Law: No new languages!
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Overview of Parallel C++ models

• TBB (Intel OSS) - parallel threading abstraction for CPU*.

• KOKKOS (Sandia) – parallel execution and data abstraction for CPU and GPU 
architectures (OpenMP, Pthreads, CUDA, …).

• RAJA (Livermore) – parallel execution for CPU and GPU architectures 
(OpenMP, TBB, CUDA, …).  CHAI adds GPU data abstraction.

• PSTL (ISO standard) – parallel execution abstraction for CPU architectures; 
designed for future extensions for GPU, etc. (e.g. Thrust and HPX).

• SYCL (Khronos standard) - parallel execution and data abstraction that 
extends the OpenCL model (supports CPU, GPU, FPGA, …).
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New Stuff (5)

Tasks (3,4), Taskloop (4)
Target-Teams-Distribute (4)

SIMD (4)
Atomics (3)

Parallel, For, Sections, 
Single, Critical, Flush, 

Barrier (2)

OpenMP
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sync
okay

sync

OpenCL 2 is a bit more 
complicated, but doesn’t change 

the execution model.
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SYCL

• Khronos standard based on C++11 and OpenCL.

• Retains the OpenCL execution model: work_groups + work_items.

• May require extensions for SIMD exec to support forward deps.

• Single-source programming model (may be >1 compiler passes).

• Eliminates the painful boilerplate code associated with OpenCL.

• OpenCL interoperability (e.g. OpenCL linear algebra libraries).

All experiments use the CodePlay* ComputeCpp implementation based on 
Clang/LLVM that generates SPIR-V.
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Model for forN reduce scan Hierarchy/Composition
TBB::parallel Y Y Y Y Threads
C++17 PSTL Y N^ Y Y Threads+SIMD; new?
RAJA Y Y Y Y Threads+SIMD; CUDA
KOKKOS Y Y Y Y Team+Thread+SIMD
Boost.Compute Y N*^ Y Y N
SYCL Y 3 N N Group(+Subgroup)+Item
OpenCL 1.x Y 3 N N Group+Item
OpenMP 5 Y Y Y Y Y**

* Boost.Compute supports embedded OpenCL, which in turn exposes 3D loop nests.
** OpenMP nested parallelism is unpleasant.  You can nest “parallel for” or switch paradigms 

to “taskloop” and give up on accelerator support.
^ One can always implement a collapsed N-d loop but that adds div/mod to loop body.
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• TBB

• Nested, blocked forall w/ affinity 
control and load-balancing

• RAJA

• Nested, blocked, permuted forall w/ 
fine-grain policy control.

• KOKKOS

• Nested, blocked, permuted forall.

• C++17 (parallel STL)

• Parallel STL evolving towards GPU etc.

• Boost.Compute

• Effectively parallel STL over OpenCL.

• SYCL

• OpenCL execution model

• Parallel STL over SYCL exists.

HPC-like vs STL-like vs OpenCL-like

STL-like

OpenCL-like

HPC-like

The HPC-like models capture the popular OpenMP idioms while hiding complexity.
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https://github.com/ParRes/Kernels/tree/master/Cxx11

Star-
shaped 
stencil

https://github.com/ParRes/Kernels/tree/master/Cxx11
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Please contact the author if you are interested in
performance data produced by the PRKs.



Copyright ©  2015, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice



Copyright ©  2015, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

// sequential C implementation
for (int i=1; i<m; ++i) {

for (int j=1; j<n; ++j) {
A[i][j] = A[i-1][j] + A[i][j-1] - A[i-1][j-1];

}
}

This pattern appears in a range of applications:
• Deterministic neutron transport (DOE-NNSA mission science)
• Smith-Waterman/PairHMM (bioinformatics)
• Dynamic programming
• Linear algebra (e.g. NAS LU benchmark)

Wavefront Parallelism

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1
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Changing the iteration space exposes parallelism

Sequential

Sequential

I-loop goes to the right,
J-loop goes down

Sequential

Pa
ra

lle
l

Loop over anti-diagonals
(see next slide)
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// sequential loop
for (int i=2; i<=2*n-2; ++i) {

int start = max(2,i-n+2);
int stop  = min(i,n);
#pragma omp for simd
for (int j=start; j<=stop; ++j) {

const int x = i-j+1;
const int y = j-1;
A[x][y] = A[x-1][y] 

+ A[x][y-1] 
- A[x-1][y-1];

}
// implicit barrier (required)

}

OpenMP inner-loop parallelism

• Very low parallel efficiency once 
data spills private cache.

• CPU SIMD doesn’t work because 
data access is non-contiguous.
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• Sequential execution requires no 
synchronization.

• Formally, there are O(n2) element-wise 
dependencies.

• Antidiagonal implementation uses O(n) 
barriers to enforce deps.

• Hyperplane amortizes barriers across many 
antidiagonals: O(n/unroll) barriers.

• Task-based has O(n2/block2) dependencies.

Amortizing synchronization overheads

sequential sweep

Parallel loop

Task dependency
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#pragma omp parallel
for (int i=2; i<=2*(nb+1)-2; i++) {

#pragma omp for
for (int j=std::max(2,i-(nb+1)+2); j<=std::min(i,nb+1); j++) {

const int ib = nc*(i-j)+1;
const int jb = nc*(j-2)+1;
for (int ii=ib; ii<std::min(m,ib+nc); ii++) {

for (int jj=jb; jj<std::min(n,jb+nc); jj++) {
A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];

}
}  

}
}

OpenMP hyperplane parallelism

This is only implemented for square grids to keep the polyhedral arithmetic simpler.
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#pragma omp parallel
#pragma omp master
for (int i=1; i<m; i+=mc) {

for (int j=1; j<n; j+=nc) {
#pragma omp task depend(in:grid[i-mc][j],grid[i][j-nc]) \

depend(out:grid[i][j])
for (int ii=i; ii<std::min(m,i+mc); ii++) {

for (int jj=j; jj<std::min(n,j+nc); jj++) {
A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];

}
}

}
}
#pragma omp taskwait

OpenMP task-based parallelism

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1
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#pragma omp for collapse(2) ordered(2)
for (int i=0; i<ib; i++) {

for (int j=0; j<jb; j++) {
#pragma omp ordered depend(sink: i-1,j) depend(sink: i,j-1)
for (int ii=i; ii<std::min(m,i+mc); ii++) {

for (int jj=j; jj<std::min(n,j+nc); jj++) {
A[ii][jj] = A[ii-1][jj] + A[ii][jj-1] - A[ii-1][jj-1];

}
}
#pragma omp depend(source)

}
}

OpenMP “doacross” parallelism

Ai,j = Ai-1,j + Ai,j-1 – Ai-1,j-1

The Intel OpenMP already has an improved 
implementation of this feature…
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Summary

• Parallel C++ effectively hides the complexity of underlying models like 
OpenMP and OpenCL without introducing any overhead (on CPUs).

• Implementation differences between OpenMP and TBB schedulers show 
places where OpenMP runtimes can be improved.

• PSTL (based on TBB in Intel’s implementation) works well on CPUs but is 
limited by STL semantics. PSTL portability requires evolution of C++ towards 
HPX, Thrust…

• SYCL provides a modern C++ abstraction and single-source compilation on 
top the OpenCL execution model.

• Task-based parallelism has a good ROI for wavefront algorithms.
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• Suite of computational chemistry functionality:
• From classical MD to AO DFT … MP2 to CCSD…
• Multi-scale: QM/MM, embedding
• NWPW: AIMD code based on MPI

• Massively parallel design for HPC systems circa ~2000.
• Process-based parallelism in Global Arrays
• Modular design to enable reuse of integrals, SCF, etc.
• Object-oriented design in legacy Fortran
• Threading from BLAS/LAPACK (until recently)
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Weak-scaling
More compute resources to 

solve a larger problem.

Strong-scaling
More compute resources to solve 

the same problem in less time.

Throughput
More compute resources 

to solve more of the 
same problem.

High-accuracy 
benchmarking

Accurate 
thermochemistry

Ab initio 
molecular 
dynamics

Materials 
Genome 
Project

Method 
Development

Umbrella sampling, 
metadynamics

Accurate 
properties
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Overview of CCSD(T)

HF-SCF
N2-4 compute
N2 storage

4-index trans.
N5 compute
N4 storage

CCSD
N6 compute
N4 storage

(T)
N7 compute
N4 storage

Bottlenecks
Atomic integrals

Parallel Eigensolver
Small messages

Bottlenecks
Atomic integrals

BW-limited kernels
High comm. volume

Bottlenecks
Async. comm.

Load imbalance
Small BLAS

Bottlenecks
One-sided gather

8-way DGEMM
Matrix reduction (local)

Solution
Reduce process count

Schedule comm. (PNNL)

Solutions
Casper (Min Si)

IE-DLB (Dave Ozog)
Coarse OpenMP

Solutions
Non-blocking comm.

Coarse OpenMP

This step is 
negligible in the 

context of CCSD(T)…
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OpenMP tradeoffs
+ OpenMP is the only (portable) threading model we can use with Fortran.

+ Threads ameliorate memory capacity issues.  Replicated data eliminates 
communication bottlenecks in irregular algorithms (e.g. Fock build).

+ Reducing the process count improves scalability of communication-intensive 
steps (e.g. global transpose).

+ Increasing compute per process decreases in-cast problem of DLB.

- Reduces parallelism because NWChem is fully process-parallel but OpenMP 
coverage is limited.

- Work/data decomposition not designed with threads in mind.

- Essential components of NWChem are not thread-safe L
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Semi-direct CCSD(T) optimizations

(T) Is ~80% of the total time for large jobs…

1. (T): Make all Get operations nonblocking.

2. (T): Manually inline subroutines and implement one fork-join per iteration.

3. (T): Improve compute intensity in exchange for infrequent extra work (<1%)

4. CCSD: thread all the important loops.

5. CCSD: fuse parallel regions as much as possible.

OpenMP coverage limited by thread-unsafe atomics integral routines.
We use OpenMP mutual exclusion for all GA calls.
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Triples performance
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(H2O)7 with cc-pVTZ (406 basis functions)
Xeon Platinum 8180 processors (2x28)
Omni Path interconnect, local SSD scratch
Intel Fortran, C/C++, MKL (2018.2.199)

4 nodes, 56 cores active (MPI = 56/OpenMP)
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Lessons learned

• (T) can run with 8x fewer processes without losing efficiency. 

• CCSD does not benefit from OpenMP for problem sizes considered.

• The conversion of (T) from OpenMP host to target was mechanical for KNC.

• Focused on Xeon Phi coprocessors so performance optimization is more 
similar to host code than in other cases.

• Semidirect code aligned with traditional OpenMP usage but TCE CCSD is 
implicitly task-based and will use OpenMP tasks (compiler support limited).

• Thread-safe GA/ARMCI is essential.  Localizing the mutual exclusion of GA 
calls is painful.  (ARMCI-MPI can be thread-safe; PNNL GA/ARMCI is WIP)
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